
Deconvolution and Imaging 
ASTR 240: In-class activity, October 8, 2018 

 
In this activity, we will use calibrated visibilities from the Submillimeter Array to 

create an image of a disk around a nearby young star.  The goal of this exercise is for you 
to get some familiarity with the process of creating an image from a set of visibilities, 
including the CLEAN algorithm that deconvolves the dirty beam from the dirty image.    
The questions are not rhetorical!  Discuss them amongst your group, but please ask me if 
you can’t figure out the answer.   

 
Setup 

1) Download and unpack the tar file containing the data we will use for the exercise.  
I have posted it on the web at: 
http://amhughes.web.wesleyan.edu/download/data.tar 
Once you have downloaded it, you can unpack it by typing “tar –xvf data.tar” in 
whatever directory you stored it.   

2) Here is a brief introduction to the software we’ll be using for deconvolution and 
imaging, known as MIRIAD (Multichannel Image Reconstruction Image Analysis 
and Display).  You can simply type commands on the command line of a 
terminal; the syntax is:  
task keyword1=value keyword2=value (etc.)   
For example, if you wanted to inspect the header of the file “filename.vis,” you 
could type: “prthd in=filename.vis” (“prthd” stands for the “print header” task, 
and the only required keyword is the filename “in”).   
This web page has compiled a list of MIRIAD tasks.  Click on a task to see a 
description of the task and an explanation of the various keywords associated with 
that task (rather than typing in the address you can just google “MIRIAD task 
index” and it should be the first result): 
http://www.atnf.csiro.au/computing/software/miriad/taskindex.html 
(note: MIRIAD is also available on all your individual student machines if you 
don’t finish this exercise today.  You will need to type “source 
/soft/miriad/miriad_start.csh” or add an appropriate line to your .cshrc file).   

 
Getting familiar with the data 

3) Inspect the files.  There should be two sets of visibilities: one is a set of 
observations in the compact configuration (compact.vis), and the other is a set of 
observations in the extended configuration (extended.vis).  You can view the 
header information by typing “prthd in=[filename].vis”   
This should provide information like the telescope, object of observation, number 
of antennae, frequency and bandwidth of the observation, and coordinates of the 
source.  Take special note of the position of the source and the frequency of the 
observation (i.e., write them down so you can refer to them later).   

4) Now, look at the (u,v) tracks.  Plot ε(u,v) for each data set by typing 
uvplt vis=extended.vis axis=uc,vc options=nobase,avall device=/xs 



(Note that this plots u,v data for the file “extended.vis,” with u on the x axis and v 
on the y axis; options “nobase” and “avall” tell it not to separate out the different 
baselines into different plots and to time-average all the data; /xs tells it to use a 
pgplot sindow as a plotting device.) 
Do you see how there are two parallel sets of u,v tracks for each observation?   
This is showing you the two different sidebands (remember that u is defined as 
x/λ, so if you change the frequency of observation you change the separation of 
the baselines in the u,v plane).  Which set of (u,v) tracks corresponds to the upper 
sideband (higher frequency), and which to the lower sideband (lower frequency)?  
Write down the (approximate) lengths of the longest and shortest baselines in this 
data set (in kilolambda). 
Make the same plot for the file “compact.vis.”  Note the different baseline lengths 
(i.e., pay attention to the ranges of the x and y axes and how they change between 
plots).  Write down the longest and shortest baselines in this data set.   
Now, plot the (u,v) coverage of both data sets by typing: 
uvplt vis=compact.vis,extended.vis axis=uc,vc options=nobase,avall device=/xs 
They should show up in two different colors.  Which color represents the compact 
configuration, and which represents the extended configuration? 

5) Now, try fitting an elliptical Gaussian to the visibilities.  There is a handy built-in 
task to do this called “uvfit.”  Type: 
uvfit vis=compact.vis object=gauss 
Check the flux, position, major and minor axes, and position angle of the fit.  
Write these down for later reference.  Sketch what you expect the image to look 
like.  
Try the same thing with the extended array data.  Do the two data sets give you 
the same results?  What do you think might explain any differences?  Which fit 
would you trust more, and why?  (These latter questions might become clearer 
after step 6.) 

6) Plot the amplitudes as a function of baseline length (or u,v distance): 
uvamp vis=compact.vis,extended.vis device=/xs bin=14,10,klam 
This command plots the visibilities as a function of distance from the phase center 
of observation, in 14 bins that are each 10 kilo-wavelengths wide (remember that 
baseline length is x/λ, and so a natural unit is the number of wavelengths that fit 
across the baseline, or for realistic data sets, thousands of wavelengths across the 
baseline).   
Is the source detected?  That is, do there seem to be some bins, particularly on the 
short baselines, in which a significant amount of flux is detected considering the 
scatter in the data (the error bars represent 1-sigma scatter)?  Estimate the total 
flux of the source.  (Do you know how to do this?  If not, ask!)   
Is the source spatially resolved?  Recall that we say that a source is “resolved” if 
its visibilities do not resemble those of a point source (which is, by definition, 
unresolved).   
What is the longest baseline on which you’re sure the source is detected?  How 
does this compare to the shortest baseline in the extended array configuration? 

 
 



Create a dirty map 
7) Now we begin the process of creating an image.  Take the Fourier transform of 

the sampled visibilities (ε(u,v)V(u,v) in the notation we used in class) to create the 
dirty map.  You can do this using the command: 
invert vis=compact.vis map=compact.mp beam=compact.bm cell=0.3 imsize=256 
options=systemp,mfs robust=2 
This command takes the Fourier transform of the visibilities in the file 
“compact.vis,” and creates a new file containing the dirty map called 
“compact.mp” while simultaneously creating a file that contains the dirty beam 
called “compact.bm” (we could have called the dirty map and dirty beam files 
anything we wanted – this is just my particular file system organization scheme).  
The “systemp” option weights the visibilities by the system temperature (so that 
noisier cells get less weight – you should ponder amongst your group why some 
visibilities would have higher system temperatures than others).  The “robust=2” 
keyword specifies natural weighting (we’ll go into more detail about this at the 
end of the exercise).  Note that I have specified the size of a pixel in arcseconds 
(0.3) and the number of pixels across the image (256).  In general, we want the 
size of a pixel to be a moderately small fraction (e.g., 1/3-1/10) of the synthesized 
beam size, and we want the number of pixels to make the image big enough so 
that it is at least somewhat larger than the size of the primary beam (and powers 
of two are nice for computation).  Estimate the size of the synthesized beam using 
the length of the longest baseline in this data set. What is the size of the primary 
beam, given that the observations were conducted with 6m antennas, and given 
the frequency you read from the header?  Are these choices of pixel size and 
number appropriate?  If not, change them!  (You will need to delete the old files 
you created first by typing “rm –rf compact.bm” and “rm -rf compact.mp”.) 
Go through the same process for the extended array data: 
invert vis=extended.vis map=extended.mp beam=extended.bm cell=??? 
imsize=??? options=systemp  
… inserting appropriate values for the cell and image sizes, respectively, using the 
information I gave you above.   
Finally, create a combined map and dirty beam for the two sets of visibilities: 
invert vis=compact.vis,extended.vis map=comext.mp beam=comext.bm cell=??? 
imsize=??? options=systemp  
(Again, inserting appropriate values for the cell and image sizes.) 

8) Look at the dirty map and the dirty beam (compact data first, followed by 
extended data, followed by combined data).  In order to display an image 
(including dirty maps or dirty beams, use the command “cgdisp.”  For example: 
cgdisp in=compact.bm device=/xs labtyp=arcsec 
(Note that the labtyp=arcsec keyword just tells it to plot the axes in arcseconds 
rather than pixels) 
There are many different ways to display an image – if you’re interested, I 
suggest reading about the “cgdisp” task in the MIRIAD task index website from 
item 2.   
When you look at the beam, notice whether it is elongated in any direction.  
Given what you know about the position of the source (and given the u,v tracks 



you plotted earlier), why do you think this might be the case?  Also notice the 
locations of the largest sidelobes, positive and negative.   
When you look at the dirty map from the compact data, notice whether the source 
appears to be elongated in any particular direction.  Is this the same direction as 
the elongation of the dirty beam?  Why might these differ?  How does the 
direction of elongation compare to the properties of the Gaussian fit you 
conducted in item 5?  Can you spot artifacts in the image due to the positive and 
negative sidelobes in the beam? 
Do the same thing for the extended data.  Do you see any signal in the map of the 
extended data?  Given what you noticed about the baselines on which signal was 
detected in item 6, and the baseline lengths you recorded in item 4, why might 
this be the case?  Can you think of why the extended data might be useful even if 
there is no signal in the map?  Hint: If the source were very compact compared to 
the beam size, would you expect to detect the source in the extended data?  What 
if it instead were large compared to the beam size, so the flux was divided among 
several beams? 
Finally, look at the combined compact/extended data.  Can you see that the dirty 
beam has a bright, narrow core caused by the extended data, and a fluffier halo 
caused by the compact data?  When you look at the dirty map, does the source 
still appear to be centrally peaked?  (i.e., is the brightest pixel at the center of the 
image?) 

 
CLEAN the map 

9) For this step, let’s focus only on the combined (compact + extended) data.  The 
CLEAN procedure is implemented in MIRIAD in the following way: 
clean map=comext.mp beam=comext.bm out=comext.cl niters=300 
This uses the dirty map (comext.mp) and the dirty beam (comext.bm) that we 
generated using the “invert” task, and cycles through the CLEAN algorithm 
creating a clean component map that is stored in “comext.cl.”  This is the record 
of the locations of all the point sources that were detected as part of the CLEAN 
procedure.   
Display the clean component map using the “cgdisp” command.  Where are the 
brightest CLEAN components?  Are they all concentrated in the middle, or does it 
look like there are two peaks instead?   
Play with the number of iterations (niters) of the CLEAN procedure until you 
think you have just barely cleaned down to the noise.  You will have to delete the 
CLEAN component map before each time you run the “clean” task (remove the 
file by typing “rm –rf comext.cl”).   

10) Finally, restore the CLEANed image by convolving with the “clean beam” using 
the “restor” task: 
restor map=comext.mp beam=comext.bm model=comext.cl out=comext.cm 
This task uses the dirty beam (comext.bm) to generate a smoother “clean beam,” 
which it then convolves with the clean component map (comext.cl) and adds the 
residuals from the dirty map (comext.mp) to generate the cleaned map 
(comext.cm).  Display the CLEANed map using the cgdisp command.  Then try 
re-displaying the dirty map using the cgdisp command.  What differences do you 



notice?  If you still see residuals from the beam, try the process again using more 
or fewer iterations of the CLEAN algorithm.  Did you not CLEAN down to the 
noise?  Did you CLEAN so much that you started confusing beam artifacts with 
signal?   

11) Congratulations!  You have just made an image of a debris disk around a young 
star!  The double-peaked structure that we are able to detect by combining the 
compact and extended array data from the Submillimeter Array tells us that the 
disk has a central hole – i.e., it’s a thin ring rather than a broad torus.  What do 
you think could be clearing out that inner cavity in the disk??? 

 
If you finish early 

12) Go back to step 7 and start playing with some of the adjustable keywords for the 
“invert” task.  The most important one is the “robust” keyword.  This allows you 
to toggle back and forth between “natural weighting” (robust=2) – which weights 
the visibilities according to the inverse of their variance (so that noisier cells in 
the (u,v) plane get lower weights) – and “uniform weighting (robust=-2) – which 
weights every (u,v) sample equally regardless of its quality.  In practice, natural 
weighting provides the greatest point source sensitivity but lower spatial 
resolution, while uniform weighting provides the highest spatial resolution 
(because it places more emphasis on the longer baselines) but lower sensitivity.  
The “robust” keyword in the “invert” task assigns an intermediate value that 
allows you to approximate a spectrum of possible weights between the extremes 
of natural and uniform weighting.  (This is known as the Briggs weighting 
scheme.  The guy who invented it, Dan Briggs, died in a skydiving accident 
shortly after finishing his PhD.  It’s a terrible story – please think twice before 
skydiving!)  Try some different values of the “robust” parameter, making sure to 
try both natural and uniform weighting and a few values in between, and see what 
gives you the nicest image (this is a subjective process!).  Don’t forget to delete 
the files in between tests, or use different names for the files (otherwise MIRIAD 
will complain that the “File exists”).  I rather like a value of the “robust” 
parameter around 0.5 for this data set.  To estimate the rms noise in the data, you 
can use the “imstat” task on the restored CLEANed image: 
imstat in=comext.cm 
Keep track of the rms noise for the different images you make.  Would you expect 
the rms noise to be higher for a uniform or natural weighting scheme? 

13) If you’ve thoroughly explored the Briggs weighting scheme, another thing you 
can try is using a Gaussian taper to place higher weight on the short baselines and 
lower weight on the long baselines – this is controlled by the “fwhm” keyword in 
the “invert” task (check the MIRIAD task index for an explanation of what this 
keyword does).  Continue to keep track of the rms noise in your images – how 
does tapering the visibilities affect the noise in the image?  Can you think of why 
this might be? 


